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We investigate the critical properties of a one-dimensional stochastic lattice modeh witbrmutation
symmetri¢ absorbing states. We analyze the cases wittd by means of the nonhermitian density-matrix
renormalization group. Far=1 andn=2 we find that the model is, respectively, in the directed percolation
and parity conserving universality class, consistent with previous studiesi=F8randn=4, the model is in
the active phase in the whole parameter space and the critical point is shifted to the limit of one infinite reaction
rate. We show that in this limit, the dynamics of the model can be mapped onto that of a zero temperature
n-state Potts model. On the basis of our numerical and analytical results, we conjecture that the model is in the
same universality class for ai=3 with exponentg=» /v, =2, v, =1, andg=1. These exponents coincide
with those of the multispecieosonig branching annihilating random walks. Fore=3 we also show that,
upon breaking the symmetry to a lower o), one gets a transition either in the directed percolation, or in
the parity conserving class, depending on the choice of parameters.
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I. INTRODUCTION ity conservation, at least at the microscopic level, is not a
necessary condition for a PC transition to ocEry8]. Hin-
The study of systems out of thermal equilibrium has at-fichsen[8] provided an example of this by introducing a
tracted great attention in recent years. As their equilibriumone-dimensional model where each lattice site can be occu-
counterparts, these systems may display continuous phapéed by, at most, one particle or can be in anynahactive

transitions characterized by a set of critical exponghisin states (9,05, ...,0,). The reactions are:
particular, much interest exists in transitions from a fluctuat-
ing active state towards an absorbing state, i.e., a configura- AA—AO,,0,A  with rate \/n, (1)

tion where the dynamics is frozen.

A prototype of a one dimensionélD) lattice model with
a transition into an absorbing state is the contact process
[1,2] in which each lattice site can be either empty (0) or
occupied by a particl€A) with the reactionsA—2A, A A0, ,0,A—AA withrate 1, (3
—0. Depending on the relative rates of these processes, the
stationary state is emptijwwvhen A—0 dominatey or is oc-
cupied by a finite density of particlegf the reactionA
—2A dominateg The contact process therefore displays a
nonequilibrium phase transition that is known to belong toWe refer to the model defined by the reactids-4) as to
the directed percolatiofDP) universality class. The empty the generalized contact proce$3CP. The original contact
lattice (00--0) is the absorbing state. procesd 2], corresponds to the case=1, in which the re-

A wide range of models with transitions into absorbing action(4) is obviously absent. Notice that the reacti@ in
states was found to belong to the DP universality class. Ahe case n=2 ensures that configurations as
typical examples, we quote the branching-annihilating ran{0;0;- --0;0;0;0;---0;0;), with i # are not absorbing. Such
dom walks(BARW) with an odd number of offspring3], configurations do evolve in time until the different domains
the Domany-Kinzel mod€l4], and the pair contact process coarsen and one of the absorbing states (0;---0,),

[5]. The DP class therefore appears to be extremely robu§0,0,--0,)---(0,0,---0,) is reached.
and quite common, but it is certainly not the only possible For the GCP witm=2, it was found from simulationis3]
one. that the transition falls in the PC classuf = w,, while if the

Another universality class that has by now been firmlysymmetry between the two absorbing states was broken,
established is the so-called parity conserviRg) class[1]. (m1# w,) a DP transition was recover¢é].

A prototype model in this class is the BARW with an even  One aim of this paper is to investigate the case3,
number of offspringg6] in which particles can diffuse and which has not been studied so far. Our results are obtained
undergo the reactions®2-0, A—(m+1)A, with man even by a numerical investigation based on density-matrix renor-
integer. In that model, the particle conservation modulo twamalization groupDMRG) techniqueg49] for the casen=3

is believed to be the reason for the system to show non-DBndn=4 and an exact solution in the limit—c«. On the
critical behavior. More recently, it became clear that the parbasis of these results, we are led to conjecture thanfor

AOk , OkA—> 0k0k with rate uy, (2)

Ok0|—>A0| ,OkA (kil) with rate 1. (4)
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=3 the model is always in the same universality class, whictGCP hasn trivial right ground states: the absorbing con-
coincides with that of multispecies branching and annihilatfigurations | 2)=[0,0. ...,Q), with k=1,2,...n. To
ing random walkg 10]. study the rest of the low-lying spectrum, we apply the
There are several reasons that make the GCP interestinpMRG in combination with finite-size scaling. The DMRG
First, it contains the two major universality classes for tran-is an iterative algorithm through which one constructs ap-
sitions into absorbing states, namely DiP<1) and PC 6 proximate eigenvalues and eigenvectorsidbr long chains.
=2). Second, fon>1, it is interesting to study the effect of At each iteration, the lattice size is increased and the con-
breaking the permutational symmetry of the model, and foffigurational space is truncated efficiently, so that one consid-
n>2, the symmetry can be broken in different walgee ers, instead of the exact operatdr effective matrices of
below). Finally, it is also interesting to investigate the per- reduced dimensions, which can be handled numerically. The
formance of the DMRG algorithm for a system with severalaccuracy obtained for the dominant eigenvalues and eigen-
absorbing configurations and with several states per site, ectors is often very good. Although originally invented for
situation that is definitely more complicated than what washermitian problems, the DMRG also works in nonhermitian
considered so far11,12. We recall that the application of cases, as it has been shown in several exanifile42.
the DMRG to nonequilibrium processes is rather recent and
its power/limitations have not been fully investigated yet,

therefore, the GCP represents another important testing _
ground for this purpose. Forn>1, the GCP has more than one absorbing state, and

This paper is organized as follows: in Sec. II, we presentherefore, more than two states per site. This, together with
the numerical results for the cases-1,2,3, and 4. In Sec. the fact that the Hamiltonian is nonhermitian, makes a
Ill, we show that in the limitu—c the dynamics of the DMRG study of the model technically difficult. Conse-
model can be mapped onto that of the zero temperatur@uently, itis of great importance to have a way to check the
n-state Potts model, which allows the determination of ondesults of our method. Until now, the GCP has only been
critical exponent. Next, we present in Sec. IV a conjectureStudied by means of Monte Carlo simulations, fier 1,2[8].
for the critical behavior of the model far=3 based on the Therefore, this section is restricted to these two cases. We
numerical and exact results. Finally, in Sec. V, we analyzeVill explain how we applied the DMRG, give some details
the effect of breaking the symmetry in the=3 case, while ©N the finite size scaling fon=2, and compare our results

Sec. VI concludes the paper. with [8]. . .
A first quantity that can be calculated by the DMRG is the

gapI" between(the real part of the eigenvalue of the first

excited state of the Hamiltonian and the absorbing ground
As a starting point for our analysis, we use the quantunstates #2). T is the inverse relaxation time and enables us to

form of the master equatidri 3,14 to describe the evolution determine the critical region and the dynamical critical ex-

A. The casesn=1 andn=2

Il. DMRG STUDY OF THE MODEL

of the stochastic processes in continuous time: ponentz= /v, . A direct implementation of the DMRG is
however very unpractical since for>1 we have a degener-
d|P(t)) ate ground state, and the DMRG is known to work best for
dat HIP(1)), (5) gapped systems. We alleviated this problem by adding, at the

two boundary sites, the following reactions:

where|P(t)) is a state vector whose elements are the prob-
abilities of finding the system in a certain configuration, and
the entries of the matrikl are the transition probabilities per

unit of time between different configurations. As in quantum, . On -
mechanics, we will calH the Hamiltonian of the system. N DMRG [9]) With Eq. (6), only |¢7) is left as a ground

However, in the most general case, as in the GCP, the matrtate. The bulk critical behavior is however exp_ected to be

H is nonhermitian, therefore, one should distinguish betweef"changed. Next, we performed the transformafitsi:

right and left eigenvectors, which are now not related by

transposition. As a second consequence, the eigenvalues H'(A)=H+A|y9)(0], (7

could be complex, butl always has at least one eigenvalue

that is zero, and the real part of the nonvanishing eigenvaluesith A>0 and whereH is constructed from the reactions

is strictly positive. Since we are interested in the stationary1—4) and Eq.(6). H’ is no longer a stochastic Hamiltonian,

behavior of the system and the relaxation towards it, we willthe zero eigenvalue is shifted to, but the rest of its spec-

determine the low-lying spectrum of the Hamiltonian, i.e.,trum is exactly the same as that Bf This can easily be

the part of the spectrum with the smallest real part. In Secshecked by looking at the eigenvalues of the left eigenvec-

[I-IV we will consider the system to be symmetric in the tors that are the same for both matrices. Therefore, the cal-

ground statesiu = wo=, ...,=u. culation of the gap of the original Hamiltonian with an
First of all, the conservation of probability always ensuresn-times degenerate ground state is reduced to the calculation

the existence of a trivial left eigenvector with zero eigen-of the lowest eigenvalue ofl’ (obviously providedA is

value(0|=% (o|, where the sum is extended over all pos- bigger than the gap dfl). This strategy could be generalized

sible configurationg o|. Besides this left ground state, the to other systems with several absorbing states, provided one

0,—04 (k#1) with ratep. (6)

(Recall that it is customary to use open boundary conditions
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) ) FIG. 2. Plot ofY for the GCP withn=2 as function ofu and
FIG. 1. Phase diagram of the generalized contact process fgpr \ =0.5. Inset: plot ofz, as a function of the inverse system
M1=p2= ... un=p, &S obtained by nonhermitian DMRG tech- |ength 1L. The horizontal lines indicate the values two and the

niques, forn=1 (filled circles, n=2 (empty squargs andn=3  known value of the exponer for the PC universality classz(
(thick solid ling. Forn=1 andn=2, the region above the curvesis _ 1.74).

the active phase, while the region below is inactive. In the linit

—oo, the critical line forn=2 approaches a finite value af, while

that forn=1 diverges towardg—0. In the other limit\ —0, both ~ gap: Y =In(I' /T 4)/In[(L+1)/(L—1)]. In the active

lines merge into a common special poisee Ref[8]). Forn=3, phase, the scaling forn' ~exp(—alL) implies Y ~—alL

the model is active in the whole parameter space except along thigvith a a positive constapt while Y, ~—z at the critical

critical line Lju=0. line.

i , ) . Figure 2 shows a plot of, for n=2, A=0.5 as a func-

finds an appropriate boundary reaction that “eliminates”;on of the parametep. for L=5,7, ... 23(in the present

zero elgenstat.es, as don.e 'by m for the .GCP' case, the calculation of the gap was extended up=t@4).
Before tur.mng to the finite-size ana_lly5|s of the calculated, , the right part of the figure, one distinguishes the scaling

gap, let us first present the phase diagramrferl andn o, yhe active phase, while in the left patarge ), one sees

=2. Figure 1 shows these diagrams, obtained by the DMRC’EhatYL flattens out and approaches the value-f, as ex-

method and standard finite-size scaling techniques. The rese o for the algebraic inactive phase of PC models. The
gion above the lines denotes the active state, where the s

faxima ofY_ , marked with a filled circle in Fig. 2, identify

Eﬁm h?S a f|tr;]|te ftzta_tlonary ddenilt){ of partlclgihwhllet belc.)wthe boundary between the active and inactive phase and can
ese lines, the stationary densily IS z€ro and the SyStem s Yy, ,seq as critical point estimates. Fromlan o extrapo-

one of the absorbing states. We fiisee below that the lation we find .= 0.69(1) for our choice ok = 0.5, which
critical exponents are the same all along the critical line an etermines poirCB of the critical line in Fig. 1. In thé inset of
are those of the DP and PC universality classrferl and Fig. 2 we plotz, = —max, Y, (uA=0.5) as a function of
n=2, respectively. We notice that the active region increase_sL/L' ExtrapolatinngL in th)z,: IianIiLtL’L—>o£> V\;e find z, — 1.747

from n_=1 ton=2. The _Iocati(_)n of the c;rit_ical lines agrees in accurate agreement with the corresponding exponent
well with Monte Carlo simulations by Hinrichsd®]. known for the PC clasg= v /v, =1.74(1)[16]
- L - . .

q tltlllstxvo:fh_twhl!e at thl'.s pomtlto. preser|1t lndsriomze MOre 1 this way, the DMRG enables us to determine the criti-
etall, the ninrte-size scaling analysis employedmior2, in - o5 region and the exponeat As we will show in the fol-

ordir tﬁ c_:Ianf;; trr:e differences with thel hliqhercr?se. For lowing subsection, using different boundary conditions we
each choice 0 the rates. (u) we can cal cu ate the gap can also find estimates for other exponents. In Table I, we
of the matrle ks SXStem of Igngtlll. This gap equ_als the show our estimates of the critical exponentand B/v, , in
lowest eigenvalue ofi” defined in Eq(7). As a function of he pointsA andB of Fig. 1. We recover the exponents of DP

L, I, has a different scaling behavior in the three regions o nd PC as expected far=1 andn=2, respectively, indicat-
the phase diagram. In the active phase, the gap should sc that the DMRG is performing wéll. '

asI'| ~exp(—aLl), since asymptotically i, the absorbing
states are degenerate with a state having a finite density of ) N
particles. At the critical line we havé’ ~L "% with z TABLE |. Estimates for the crltlce_1l exponenis= /v, and

_ VH/VJ_ the dynamical exponent. For=2 the system is in Blv, calculated fom=1 and 2 absorbing states. We recall that for
the PC universality class and the whole inactive phase i®" Z=1:5806,5/v,=0.25 and for PGz=1.75, f/v, =0.50.

known to be algebraic: the gap decayslas-L 2. Notice

that the latter behavior is different in DP models where the A Ke 2=y /v Blv.
gap is finite, i.e.I', ~T'>0, in the inactive phase. 1 0.5 0.201) 1.5755) 0.2555)
The finite-size scaling behavior &f, can best be moni- 2 0.5 0.691) 1.7475) 0.491)

tored by plotting the discrete logarithmic derivative of the
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FIG. 3. Plot ofY, for the GCP withn=3 along the line\ = u. FIG. 4. Plot of the gagT'} (), calculated along the link=

[with p’=p in reaction(8)] as function of 2 for systems of

lengthsL=6,8, . . . ,18Inset: scaling collapse qf"IT"| (1), plotted
Since the results of the DMRG are consistent with theas function oful ~Y"+ for L=10, 12, 14, 16, and 18 and where we

Monte Carlo results fon=1 andn=2, we can confidently usedy=2 andv, =1.

use it to study also the case=3. Again we start by an

analysis of the gap: in Fig. 3 we plot the quantify along These data also give the possibility to estimate the corre-

the linex=u for L=7,9, ...,19. As forn=2, we find clear  lation length exponent along the time directian: Finite-

evidence of an active phase for smallwhereY ~—al. size scaling around the critical pointd#0 gives us the

However, when we want to determine the critical point byfollowing scaling relation:

localizing the maxima, we find that upon increasingthe

maxima shift towards larger values gf In the limit L—oe, Tl (\=w)=p "If(ul = 2"). 9

we find unhax—, indicating that the system is always active

and that the critical point is shifted tod#~0. This numeri- For u fixed andL—o, I'| remains finite, so the scaling

cal evidence, together with the arguments presented in thieinction should behave like lim . f(x)=f,. As a conse-

next section, lead us to expect that the model is critical onljguence in the thermodynamic limit— o, the gap should

if 1/u=0, as indicated in Fig. 1. The estimate of the expo-yanish at the critical point aE| ~ .~ "I. The linear behavior

nentz at A=p—c yields z=2.0Q(3). In thenext section,  of the gap in Fig. 4, when plotted as a function of 2,

we will give an analytical treatment of the cas@. /0 con-  gready indicates thatj=2 and this results is also consistent

B. The casen=3

firming this value ofz N _ with the scaling collapse reported in the inset, where we took
To get access to more critical exponents, we introduce, — 2 andz=2
different boundary conditions. We replace E6) with I . it i
Yy : p Finally, using the same boundary te(®) it is also pos-

. p sible to compute the critical exponepgt that describes the
O—A  with ratep vk, ®) behavior of the particle density near the critical point. With
through which particles are continuously injected at thethe boundary conditiogg), the stationary state of any finite

boundarv sites. Now the stat{aﬁo) are no lonaer absorbin system has a nonzero density of particles. We calculated, in
waary ' k ger absorbing particular, the average density of particles in the central site
configurations, and the spectrum of the Hamiltonian is non:

. ) . . . of the chain that we will denote gs (\,x). This quantity,
deggn_erate. There is a unique right e'gf?”Yeh"@?’ \.Nh'Ch calculated along the link= u, is shown in Fig. 5 for chains
for finite system lengths always has a finite density of Par s \arious lengthsup to L=24) and plotted as function of
ticles. In the active phase, the g&p is no longer asymp-

. ! : . . 1/u. For largeuw and\ (u=2), the DMRG does not perform
totically degenerate, as in the previous case, but it remaing '\ il and we had to restrict the calculationLte 14
finite, indicating that the system relaxes exponentially fast As seen in the figure in the limit—oo, the statibnary

';.szérgsh‘ﬁ&' SuTma”Z_'nf' i (‘ijh c%n3|dgr th(:‘ model de- particle density vanishes only fqi—, again indicating

ined by the reac |on61) ( )gn ’e ounadary erd) W€ " that the system is always active for any finite For largeu,

have a gap behaving as lﬂmwFLzr0>O in the active the order parameter is expected to decayasu #, there-

phase, while as beforE| ~L~* at the critical point. This fore the quantity

means we can usk, itself to discriminate between the ac-

tive and critical domains. L) dinp (N=p)
Figure 4 shows a plot of the gap, along the line\x Ber( L) == dinu

=u. When we extrapolate — oo, the gap remains finite for

every value ofu, i.e., we find again that the system is active converges to8 for L—« and u—«. The inset of Fig. 5

throughout the whole parameter space. shows a plot 03¢ as a function of 1 for chains of various

(10

036124-4



GENERALIZED CONTACT PROCESS WITHh . .. PHYSICAL REVIEW E 64 036124

1 T T . Ill. FAST RATE EXPANSION FOR g OR A—®

In this section, we show how the dynamics of the model
can be simplified in the limit where one of the rates of the
decay processed) or (2) goes to infinity. Foru— o, the
resulting effective dynamics coincides with that of a zero
temperaturen-state Potts model. This leads to a determina-
tion of the exponent.

Intuitively, the argument goes as follows. Far—-«, all
particles in the system will disappear very quickly, and in
any finite system one will soon be in a configuration contain-
ing only then empty sites @, 0,, and @, . Particles will then
be created at the boundaries separating inactive domains by
Eqg. (4), but again they will disappear immediately by reac-
tion (2). Hence, when looked at the time scale of the slow

b processe$3) and(4) the dynamics can be limited to the set

FIG. 5. Plot of the stationary particle densjyfor the model of configL_Jrations that C(_)ntain only empty S?télﬂ this_limit,
with n=3 absorbing states along the lipe=\ for various system the creation of two particles on nearest-neighbor sites occurs
sizes (=4.6, ...,24). For large, the calculation has been lim- With even smaller probability and the effect of Ed) can
ited toL = 14. Inset: plot of the effective exponeftas function of ~ therefore be neglect¢dAs an example consider:

1/u for L=6 (lower curve up toL =14 (upper curve

P

4 2
. 'Okokokolol' . <_>) . 'OkokAOIOI' . (_3 . 'Okokololol' o.
system lengths. The extrapolated result for12 andL (12)
=14 is3=1.00(1). (See Fig 5.

In summary, we found that far=3, the system is always The whole process consists of moving the domain wall one
active, except for J=0 where it is critical and we have unit to the left with rate(on the time scale of the slow pro-
exponents consistent with=2, =2, f=1. cess$ equal to 1/2. Going in this way through all possibilities
one can derive an effective dynamics on the slow time scale,
which turns out to involve diffusion, annihilation and coagu-
lation of domain walls.

To conclude our numerical calculations for the case of The above heuristic reasoning can be made mathemati-

symmetrical ground states, we studied the system with fougally rigorous using a fast rate expansion introducefiL#j.
inactive states per site. Here, we restricted ourselves to @/e therefore writeH as

calculation of the density, (A, «) with boundary condition

(8). Our results are shown in Fig. 6. H=Hy+uH4, (12
From these data we find, as was the casafeB, that the ) ) )

system is active for any finite value pf and that the critical WhereHg contains the reactiondl), (3), and (4) while H,

C. The casen=4

exponent3=0.994). conta_ins only the reactior(Q)_. In the limit u—o0, it is ap-
propriate to apply the Schwinger-Dyson formula to the op-
1 . ; . eratore” M that appears in the formal solution of the master

equation(5). One has

08 t
e~ (Mot uH1)t— g=uH1t l—f drHo(71)
0
06
—~ t T
\% +J'd7'lJ' deHo(Tl)H0(72)+ s |y
a 0 0
04 e 1
%"'\‘\4\; (13)
02 t | where
0.8 3 A :
0 02 04, 06 08 1
5 Ho(7)=e#M1"H e~ #H17, (14)
%0 2 4 6 8 . . .
i Using this expansion it can be shoyt¥] that for u— o the

time evolution operatoe "' becomes
FIG. 6. Plot of the stationary particle densjpyfor the model

with n=4 absorbing states along the lipe=\ for various system lim e~ (HotwuH)t= g=HotT* (15)
sizes (=4,6,...,14). For largee, the calculation has been ex- — 00

tended up td_=10. Inset: plot of the effective exponeftas func-

tion of 1/u for L=6 (lower curve up toL =10 (upper curve where
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Fo=T"H,T* (16) can be !abeled by two indices and in this way they can be
divided into classes. We will denote I#y; a particleA that
andT* is the projector on the ground stateshbf, i.e., separates an;@omain on its left side from an;@omain on
its right side. In the limit\ —<, it is useful to look at the
T*=lim e M1, (17 dynamics of these particles. Whenr=1, there is only one
t=e type of particle, and from a determination of the effective

HamiltonianH, (see the Appendixwe find that this particle
can diffuse, and undergo the reaction82A and A—0.
Since there are no processes that create particles, we arrive at

Equation (15) shows that foru— o, the generator of the
effective dynamics iH, that is nothing butH, projected
antcf) the grognd states bf;. In the (,_;CP’ t'he grqund states of the conclusion that independently af the GCP withn=1
Lfora chaln of lengtfi. are then™ configurations without must always be in the inactive state whens. This is in
particles andH,, is then the effective Hamiltonian of the slow agreement with our numerical resuisee Fig. 1
processes projected in this reduced space. This is the math- For n>1 the sjtuation is less clear. Now there are pro-
ematical description of the physical arguments given in theesses that both destroy and create particles present in the
beginning of this section. If one works out the matrix ele- gffective dynamics(see the Appendix It is therefore, in
ments ofH, (see the Appendjxone obtains that the follow- principle, possible to have both an active and an inactive

ing processes can occur with the indicated rates: phase, depending on the valuewofAt this moment, we can
draw no firm conclusions for the form of the phase diagram
0,0,0,— 0,00y rate 2, (18 when\—w. On the basis of our numerical work and on the

basis of our results for— o0, we believe that the model is

00,0—0.0,0; rate 1/2, probably always active along that line, at least winen2.

—0,0,0, rate 1/2, (19)
IV. RELATION WITH BRANCHING AND ANNIHILATING
Ok0|0m—>0k0k0m rate 1, WALKS
—0,0,,0,, rate 1. (20) In his paper, Hinrichsefi8] gave an heuristic argument

that relates the GCP far=2 to the BARW with two off-

It is now useful to interpret then empty states as the springs, thus explaining the PC universality found numeri-
possible spin values of anstate Potts model. In this lan- cally. This argument works as follows: indicating wik;
guage, the processes8—20 can be summarized as follows: the domain wall between two configurations &nd q he
the central spin assumes the value of one of its neighbogonsidered an effective dynamics for the variabigs. As
spins with equal probability. The dynamics of our model inseen in the previous section such representation of the origi-
the limit u— oo is therefore consistent with the requirementsnal model becomes exact either in the limits and then
of detailed balance for an-state Potts model at zero tem- Xi; coincides with the particle\;;, or in the limit u— o
perature. It is generally expected that if such a dynamicgyhereX;; coincides with the bond variable@ . For finite
includes a domain-wall diffusion, that then it is critical with values of these parameters one can still apply this reasoning
a dynamic exponert=2 [17], independently of. In fact,  at a coarse-grained level. In this casg; is not a sharp
the exponentz=2 can be derived exactly for the case thatdomain wall, but an object with a fluctuating thickness. Hin-

the rate of the proces&l8) equals one, and those of the richsen argued that in this coarse-grained representation the
processes in Eq20) equal 1/2[18]. Hence, it is quite pos- most likely reactions fon=2 are

sible that also for our modet=2 exactly. Fom=2, we thus

recover the known dynamical exponent 2 in the inactive @ (b)

phase of a model with a PC transition. Foe 3 our numeri- Xij=XiXjiXij - XijXji—0, (21
cal data strongly suggest that far—co, the GCP is critical, B . o .

and hence, the exponemt=2 must correspond to the dy- gg;nq& j ’o?nseU(:hhasre(z)ak():\t/ilgrl::Hi/s_ ;h ojv;nzir?rF\i/gll(;g?z;r?? (f;)n
namical exponent at criticality for these models. This esti- otice that the reaction@) and (b) given in Eq.(21) are

mate is indeed consistent with the value that was determine’(\é1 ; N
numerically forn=3 in the previous section. those for a branching-annihilating random waBARW)

The result that numerically the exponghts the same for W'th. two offsprings, 'whlch'suggesttc, indeed, as found nu-
n=3 andn=4, combined with the fact tha=2 if n>3 merically that the universality class is PC.
leads us to conjecture that for ali= 3, the critical exponents Thgse arguments can be extended to _the nas2, where
are the same, i.e3—1, z—2, andy=2. In the next section there is still the pos§|b|llty of ha_vlng reactions of ty(ze and'
we will give further arguments that support this conjecture.(b)’ .bl.n also re_act|o.ns involving three different domains
It is also possible to study the effective dynamics of the(I #1, 17k, andj#k):
GCP for A—oe. In this limit, the dynamics of the model (c) (d)
when considered on the time scale of the slow processes Xij—=XiuXij  XieXij— Xij - (22
(2)—(4), will be restricted to the space of configurations with-
out particle pairs. Each particle present in the system thelWhenn>2 there are actuallp(n—1)/2 domain walls, and
separates two domains of empty sites. Therefore, particlehe model described by reactiofi@l) and (22) is now a
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stance, they are placed at opposite sides the offsprings cannot

annihilate through the reactid23) because of the presence
of the parent particle that blocks them. In the bosonic model,
the two offspring can instead always recombine.

Apace It is important to stress here that in the multispecies

BARW model we constructedEgs. (21)—(22)] from a
coarse-grained representation of the GCP there are no block-

(d) ing effects. By the very construction of the model two do-

time main walls approaching each other can always annihilate.

Therefore, even if the model is clearly of fermionic nature its

/< \ universality class, as found numerically, is that of the

bosonic multispecies BARW.

FIG. 7. Possible reactions in the coarse-grained representation V. THE EFFECT OF BREAKING THE SYMMETRY

of the GCP fom=2 (a)—(b) andn>2 (a)—(d). As a final point we consider the effect of breaking the
permutation symmetry of the inactive states of the model.

BARW with more than one type of particles. To our knowl- For n=2 Hinrichsen[8] explicitely broke theZ, symmetry

edge, this type of model has not been studied yet, but wgy choosingu;+# u, in the reactior(2). As a result, he found

expect it to be in the same universality class as the GCP witthe system to switch from PC to DP behavior, which was

n>2,i.e., always in an active state except when the rates falinderstood as PC being related to the presence of an exact

the processes¢a) and (c) are zero, and with exponents 7, symmetry.

=2, B=1 andy=2. For n=3, we now perform a similar symmetry breaking

There is a BARW with more than one type of particles by considering the following two case@) w1/2=u,= i3

that has attracted some attention recently. The model wagnd (b) 2.,=u,=us. In both cases, the system haZa

introduced by Cardy and Taer[10], who considered a sys- symmetry due to the equivalence of the statesaidd 0. The

tem with N different particlesA®, where a=1,2,... N,  (difference is that starting from a random configuration in the

which diffuse and undergo the reactions: second case the system is more likely to reach the absorbing
states (9,0,,0,,...,) and (Q@,03,03, ...,) compared

2A"—0  withrate 1, (23 \with (0,,0,,04, . ..,), while in the first case the reverse is
0 nanana _ true. We calculated the particle density(\, w1, o, 13) @S

AT ATA"AT  withrate o, (24 pefore, using the boundary tert®). Depending on the phase
a  ponBap . , in which the model is, the density will behave as=pg
A= ATAPA with rate o'/(N—1), (25 +ce 2t (in the active region p.~L A" (at criticality),

. o or p.~e 2 (in the inactive phage If we define §(L)=

where, in the last reaction, it is understood that 8. The
bosonicversion of this model has precisely the same expo- ~Inlpesa /oIl +1)nL 1)), we expect lip_, 5(L) to
nents we determined for the GCP with-2 [10]. Notice that b€ zero in the active phase, to Bév, at critical points, and
the coarse-grained representation of the GCP as defined by in the inactive phase. In Fig. 8 we plotte{{L) as a
the reactions in Fig. 7 and the model defined by the reaction#inction of 1L for cases(a) and (b) with the choicex
(23), (24), (25) do not actually coincide. While there is an =0.5 and injection rate’=1.5. In both cases, for small
obvious correspondence betwe@3), (24), with (b), (a) of ~ one finds the typical scaling behavior of the active phase
Fig. 7, the reactiori25) does not have any obvious counter- with 5(L)—0 just as for the casg;=pu,= u3. For large
part. It is nota priori clear, therefore, that the two models are i, however, the situation differs from the symmetric
in the same universality class. The coincidence of the criticamodel. For(a), we find (L) — + for large u, i.e., one has
exponents therefore suggests that one could replac€Bx. a standard inactive phase with a particle density exponen-
with other reactions, as for instand®*—AYA?, without tially small in L. In case(b), (L) becomes equal to one,
changing the universality class. To our knowlegde, BARWiImMplying that the inactive phase is itself critical wiy/v,
models with this kind of reactions have not been studied yet=1. In between the active and the inactive phase we have a
They form an interesting subject for further investigation. critical point whered(L) is going to a distinct finite value.

The model of Cardy and “Tdver has raised some interest The critical point estimates of(L) are marked by filled
recently since it has been found that fermionic and bosonicircles in Fig. 8. For caséa) the critical point is atu
versions of the model are in different universality classes~0.64, while for(b) it is at u,~0.42. The value of3/v,
[19]. In the fermionic version only one particle per lattice agrees with that of DP and PC, respectively, as can be seen in
site is allowed, which implies that particles of different spe-Fig. 8 where the critical values of these universality classes
cies block each other. In the fermionic version of the modelare indicated with a dotted line.
it makes for instance a difference wether the two offsprings This indicates that on breaking the symmetry of the inac-
produced by the reactiof25) are placed to the same side or tive states, the remaining symmetry of iheminantratesu;
at opposite sides of the parent parti¢l9,20. If, for in- determines the critical behavior. In ca®g, uq<u,= usthe
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04 T L5 T phase, remains very limited. It could have been hoped
(a) (b) e priori that for the generalized GCP studied here, new univer-
* —— sality classes could appear fo>2. In a sense our results
03 f 1 T show that this is true, but only in the least exciting way
DP\\‘ [ e, . possible: the universality class does not dependhpand
e — ¥ ] ——%— .o
- g moreover, the exponents take on rather trivial values. One
= 02 \H/ ] oy could hope that by lowering the permutation symmetry to a
© e - Ll | Z, symmetry, other universality classes could appeamfor
25 05 _P_C_W,,g:;» =4. This could be done, e.g., by having the rates of the
ol | o process4) depend orfk—1| mod(n). But since this would
E P/E/ ] only make a difference fan=4, it will probably be difficult
e o to investigate such a model with the numerical techniques
0 ,;gp”” L " L currently available.
0 0050101502025 0 005 0.1 015 0.2 0.25 We also verified that if one breaks the permutation sym-
1L L metry of the model withn=3, one recovers a DP or PC

FIG. 8. Plot of & for the GCP withn=3 and () 1,/2= u, universality, suggesting that it is the symmetry of the largest

= s, (b) 2u1= s, = us. Both cases were calculated wikh=0.5 rates that determines the universality class.
and p’=1.5. Symbols refer to curves calculated in the inactive inally, we remark that the consistency of the DMRG

phase(stars, at the critical point(filled circles and in the active ~'€Sults with those coming from simulation for=2, or with
phase(empty squares At criticality 5(L) converges towards the the exactly determined value affor n=3, shows convinc-
values of 3/v, expected for DRa) and PC(b), and indicated by  ingly that the DMRG can be trusted as a powerful method in
horizontal dashed lines in the figure. Notice the two distinct behavthe study of(criticality in) non equilibrium systems.
iors of 6 in the inactive phase.
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VI. CONCLUSIONS APPENDIX

f. Itn_ tthlsdpapc(jart,) WS. st.ug|ed aTgenere}llzed ctzor]:tact proclttess In this appendix, we will calculate explicitly,
irst introduced by Hinrichsen. The major part of our results,, e~ (Ho+HDt \wherer is one of the rates of the GCP.

were obtained by applying the DMRG to the model. With M

this technique we verified that for=2, the critical line of In Sec. lll, it was shown that this reduces to the calculation
the model is in the PC universality class, consistent withof Ho=T*H,T*, the Hamiltion that describes the effective
earlier results coming from simulations. dynamics. Sincel* =lim__ e 1t this is a projection of

hA rf]|rst sfet 0(1; ;ESltJIttr? wasdot|)§a|nled for th'? case 3, f;)r ) H, on the ground states ¢f.
which we tound that the model IS always active, eXCept Wnen = o1 ;5 genote the right ground statesbf as| ;) and the
pn—, which corresponds to the critical line of the model.I ft

. . " eft ones agp;|.

From our numerical work, we determined the critical expo-

nents to be equal t@=2,»=2 and g=1. Using well- H,|¢:)=0, (A1)
established scaling law®1], other exponents can be deter-
mined from these three. For=4, we found evidence that (pi|H;=0. (A2)

the phase diagram is the same, and that the critical exponent

B also equals one. Secondly, using a fast-rate expansion th@ihe physical meaning df;) is evident: they are the station-

becomes exact fon— o, we were able to argue that in that ary states of,, any statd) will under the dynamics ofi,

limit z=2. It can be hoped that by examining the model forrelax into one of theséy;). The left ground state&p;| can

w1 small using perturbation techniques, it may be possiblde interpreted as linear functionals giving the corresponding

to determine also the exponengsand v exactly. On the probabilities: any statgy) will under the dynamics of;

basis of these numerical and exact results, we conjecturelax into the ground statéy;) with probability (p;|#)

that the universality class of the model is the same for allwhere we assumed thép;| are normalized{p;| ;)= &;;).

n=3. Using this notation, we can write the projection operatdr
The exponent values that we found foe=3 coincide as

with those of the BARW model with more than one type of

particles introduced by Cardy anddizer[10]. We were able T+ = 2 1) (pil (A3)

to give an heuristic argument that explains why the two mod- i VAR

els could be in the same universality class. It is interesting to

remark that despite many attempts the number of universaBince, clearly,[Z(p;|]|#)=1 for any (normalized state

ity classes found for phase transitions out of an adsorbingy), this projection conserves probability, meaning that when
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H, is a stochastic operator, so f§,. Furthermore, we can Which are the processes and their corresponding rates already
write the transition rates of the effective dynamics betweerfiven in Egs.(18)—(20). Note that this calculation is exactly

state|;) and|y;) as the same fou=\—o. .
Next, we consider the limik—c. In this case, we have

rate| i) — | ¢;)) = (pj| (—Ho) | ). (A4) H=Hg+\H,, (A8)

These matrix elements determine the effective dynamics, a
we will now calculate them explicitly.

We first study the limit where the raje of the processes
AOy,0,A— 0,0, goes to infinity. The Hamiltonian is of the
form

n\?/hereHo is the generator of the proces4@s-4), andH; is

the generator of proce<€d4) with the factorA brought out.
The ground states dfl; are now all configurations contain-
ing no particle pairs. In contrast with the previous case, all
processes oH, are now relevant for the projection on the
ground states offl ;.

We will start with the case@=1, where there is only one
whereH, is the generator of the process@s, (3), (4), and  inactive state 0, and proceg$ cana priori not take place.
H, is the generator of proces®) with the factoru brought ~ FOr process3) we again use the three-site representation,
out. In this case the ground stafef) of H, are all configu-  While process2) is so simple that we keep the two-site rep-
rations containing no particles. First, we note that the pro- resentation. We then get the following effective dynamics:
cesseg1) and(3) can only act on configurations containing

H=Ho+uHy, (A5)

particles, so they cannot contribute to the rat4) of the Reaction _ Projection
effective dynamics, and we redefiki, without them. withrate ... . withprobabiliy ... Netrate
When we now projecH,, which contains only two-site rate 1
interactions, onto thiy;), the resulting operator will contain A0 — 00 — 00 rate p-1=pu
three-site interactions. It is therefore convenient to first re- e 1 12 1 1
write Hy as a three-site operator. Since we only have reactioA00 — AAO — AO0O rate 15=3
(4) left in Hyp, this becomesk#1#m) L1
1/2
— 0AO0 rate 1 -= -
0k0|0k—> OkAOK, rate 2 2 2
rate 2 1/2 1
0,0,0,,—0,A0,, rate 2 (AB)  AOA — AAA — AOA rate 25 =1
1/4 1 1
Ok0|0|4)0kA0| rate 1 — 0AO0 rate 2Z: E
1 1
OKO|A—> OkAA rate 1 f AO0O rate 2-§= Z
(together with some reactions that are obtained by reflec- 1/8 1 1
tion). We finally notice that the last process of H#6) is — 00A rate 2=
again not relevant for the projection ¢g;), and determine (A9)

the effective dynamics in the following diagram: For \— andn=1 we find the effective dynamics to con-

tain only diffusion and destruction of particles. Because of

Reaction _ Projection the first reaction appearing in EGA9), the decay of particles
with rate with probability Net rate is exponentially fast, meaning that for any finite valuewof
rate 2 1 this system is noncritical.
000 — 0kAO, — 00,0 rate 21=2 For the casen>1 also proces$4) has to be taken into
rate 2 172 1 account. As a consequence, two different neighboring inac-
00,0 — 0,AO — 000 rate 25=1 tive domains remain active. For example,
. 00m0m rate 2-% =1 0010 —0kAD, (A10)
e 1 U 11 remains a process of the effeptive dyna_mics. Ong can easily
00,0, — 0,AQ, — 00,0, rate 1-5: 5 construct the complet_e gﬁect_lve dynamics, _but this does not
lead to much further insight in the phase diagram. One can
1_’fo 0.0 rate 1-5:3 only conclude that because of the presence of the process
KEH 2 2 (A10), it is in principle possible that both active and inactive
(A7)  phases are present.
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