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We investigate the critical properties of a one-dimensional stochastic lattice model withn ~permutation
symmetric! absorbing states. We analyze the cases withn<4 by means of the nonhermitian density-matrix
renormalization group. Forn51 andn52 we find that the model is, respectively, in the directed percolation
and parity conserving universality class, consistent with previous studies. Forn53 andn54, the model is in
the active phase in the whole parameter space and the critical point is shifted to the limit of one infinite reaction
rate. We show that in this limit, the dynamics of the model can be mapped onto that of a zero temperature
n-state Potts model. On the basis of our numerical and analytical results, we conjecture that the model is in the
same universality class for alln>3 with exponentsz5n i /n'52, n'51, andb51. These exponents coincide
with those of the multispecies~bosonic! branching annihilating random walks. Forn53 we also show that,
upon breaking the symmetry to a lower one (Z2), one gets a transition either in the directed percolation, or in
the parity conserving class, depending on the choice of parameters.
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I. INTRODUCTION

The study of systems out of thermal equilibrium has
tracted great attention in recent years. As their equilibri
counterparts, these systems may display continuous p
transitions characterized by a set of critical exponents@1#. In
particular, much interest exists in transitions from a fluctu
ing active state towards an absorbing state, i.e., a config
tion where the dynamics is frozen.

A prototype of a one dimensional~1D! lattice model with
a transition into an absorbing state is the contact proc
@1,2# in which each lattice site can be either empty (0)
occupied by a particle~A! with the reactionsA→2A, A
→0. Depending on the relative rates of these processes
stationary state is empty~when A→0 dominates!, or is oc-
cupied by a finite density of particles~if the reactionA
→2A dominates!. The contact process therefore displays
nonequilibrium phase transition that is known to belong
the directed percolation~DP! universality class. The empt
lattice (00̄ 0) is the absorbing state.

A wide range of models with transitions into absorbi
states was found to belong to the DP universality class.
typical examples, we quote the branching-annihilating r
dom walks~BARW! with an odd number of offsprings@3#,
the Domany-Kinzel model@4#, and the pair contact proces
@5#. The DP class therefore appears to be extremely ro
and quite common, but it is certainly not the only possib
one.

Another universality class that has by now been firm
established is the so-called parity conserving~PC! class@1#.
A prototype model in this class is the BARW with an ev
number of offsprings@6# in which particles can diffuse an
undergo the reactions 2A→0, A→(m11)A, with m an even
integer. In that model, the particle conservation modulo t
is believed to be the reason for the system to show non
critical behavior. More recently, it became clear that the p
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ity conservation, at least at the microscopic level, is no
necessary condition for a PC transition to occur@7,8#. Hin-
richsen @8# provided an example of this by introducing
one-dimensional model where each lattice site can be o
pied by, at most, one particle or can be in any ofn inactive
states (01 ,02 , . . . ,0n). The reactions are:

AA→A0k ,0kA with rate l/n, ~1!

A0k ,0kA→0k0k with ratemk, ~2!

A0k ,0kA→AA with rate 1, ~3!

0k0l→A0l ,0kA ~kÞ l ! with rate 1. ~4!

We refer to the model defined by the reactions~1–4! as to
the generalized contact process~GCP!. The original contact
process@2#, corresponds to the casen51, in which the re-
action~4! is obviously absent. Notice that the reaction~4! in
the case n>2 ensures that configurations a
(0i0i¯0i0i0 j0 j¯0 j0 j ), with iÞ j are not absorbing. Such
configurations do evolve in time until the different domai
coarsen and one of then absorbing states (0101¯01),
(0202¯02)¯(0n0n¯0n) is reached.

For the GCP withn52, it was found from simulations@8#
that the transition falls in the PC class ifm15m2, while if the
symmetry between the two absorbing states was brok
(m1Þm2) a DP transition was recovered@8#.

One aim of this paper is to investigate the casen>3,
which has not been studied so far. Our results are obta
by a numerical investigation based on density-matrix ren
malization group~DMRG! techniques@9# for the casen53
and n54 and an exact solution in the limitm→`. On the
basis of these results, we are led to conjecture that fon
©2001 The American Physical Society24-1
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>3 the model is always in the same universality class, wh
coincides with that of multispecies branching and annihi
ing random walks@10#.

There are several reasons that make the GCP interes
First, it contains the two major universality classes for tra
sitions into absorbing states, namely DP (n51) and PC (n
52). Second, forn.1, it is interesting to study the effect o
breaking the permutational symmetry of the model, and
n.2, the symmetry can be broken in different ways~see
below!. Finally, it is also interesting to investigate the pe
formance of the DMRG algorithm for a system with seve
absorbing configurations and with several states per sit
situation that is definitely more complicated than what w
considered so far@11,12#. We recall that the application o
the DMRG to nonequilibrium processes is rather recent
its power/limitations have not been fully investigated y
therefore, the GCP represents another important tes
ground for this purpose.

This paper is organized as follows: in Sec. II, we pres
the numerical results for the casesn51,2,3, and 4. In Sec
III, we show that in the limitm→` the dynamics of the
model can be mapped onto that of the zero tempera
n-state Potts model, which allows the determination of o
critical exponent. Next, we present in Sec. IV a conject
for the critical behavior of the model forn>3 based on the
numerical and exact results. Finally, in Sec. V, we anal
the effect of breaking the symmetry in then53 case, while
Sec. VI concludes the paper.

II. DMRG STUDY OF THE MODEL

As a starting point for our analysis, we use the quant
form of the master equation@13,14# to describe the evolution
of the stochastic processes in continuous time:

duP~ t !&
dt

52HuP~ t !&, ~5!

whereuP(t)& is a state vector whose elements are the pr
abilities of finding the system in a certain configuration, a
the entries of the matrixH are the transition probabilities pe
unit of time between different configurations. As in quantu
mechanics, we will callH the Hamiltonian of the system
However, in the most general case, as in the GCP, the m
H is nonhermitian, therefore, one should distinguish betw
right and left eigenvectors, which are now not related
transposition. As a second consequence, the eigenva
could be complex, butH always has at least one eigenval
that is zero, and the real part of the nonvanishing eigenva
is strictly positive. Since we are interested in the station
behavior of the system and the relaxation towards it, we w
determine the low-lying spectrum of the Hamiltonian, i.
the part of the spectrum with the smallest real part. In Se
II–IV we will consider the system to be symmetric in th
ground states:m15m25, . . . ,5m.

First of all, the conservation of probability always ensur
the existence of a trivial left eigenvector with zero eige
value ^0u[(s^su, where the sum is extended over all po
sible configurationŝ su. Besides this left ground state, th
03612
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GCP hasn trivial right ground states: then absorbing con-
figurations uck

0&[u0k0k , . . . ,0k&, with k51,2, . . . ,n. To
study the rest of the low-lying spectrum, we apply t
DMRG in combination with finite-size scaling. The DMRG
is an iterative algorithm through which one constructs a
proximate eigenvalues and eigenvectors ofH for long chains.
At each iteration, the lattice size is increased and the c
figurational space is truncated efficiently, so that one con
ers, instead of the exact operatorH, effective matrices of
reduced dimensions, which can be handled numerically.
accuracy obtained for the dominant eigenvalues and eig
vectors is often very good. Although originally invented f
hermitian problems, the DMRG also works in nonhermiti
cases, as it has been shown in several examples@11,12#.

A. The casesnÄ1 and nÄ2

For n.1, the GCP has more than one absorbing state,
therefore, more than two states per site. This, together w
the fact that the Hamiltonian is nonhermitian, makes
DMRG study of the model technically difficult. Conse
quently, it is of great importance to have a way to check
results of our method. Until now, the GCP has only be
studied by means of Monte Carlo simulations, forn51,2 @8#.
Therefore, this section is restricted to these two cases.
will explain how we applied the DMRG, give some deta
on the finite size scaling forn52, and compare our result
with @8#.

A first quantity that can be calculated by the DMRG is t
gap G between~the real part of! the eigenvalue of the firs
excited state of the HamiltonianH and the absorbing groun
statesuck

0&. G is the inverse relaxation time and enables us
determine the critical region and the dynamical critical e
ponentz5n i /n' . A direct implementation of the DMRG is
however very unpractical since forn.1 we have a degener
ate ground state, and the DMRG is known to work best
gapped systems. We alleviated this problem by adding, at
two boundary sites, the following reactions:

0k→01 ~kÞ1! with ratep. ~6!

~Recall that it is customary to use open boundary conditi
in DMRG @9#.! With Eq. ~6!, only uc1

0& is left as a ground
state. The bulk critical behavior is however expected to
unchanged. Next, we performed the transformation@15#:

H8~D![H1Duc1
0&^0u, ~7!

with D.0 and whereH is constructed from the reaction
~1–4! and Eq.~6!. H8 is no longer a stochastic Hamiltonian
the zero eigenvalue is shifted toD, but the rest of its spec
trum is exactly the same as that ofH. This can easily be
checked by looking at the eigenvalues of the left eigenv
tors that are the same for both matrices. Therefore, the
culation of the gap of the original Hamiltonian with a
n-times degenerate ground state is reduced to the calcula
of the lowest eigenvalue ofH8 ~obviously providedD is
bigger than the gap ofH). This strategy could be generalize
to other systems with several absorbing states, provided
4-2
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GENERALIZED CONTACT PROCESS WITHn . . . PHYSICAL REVIEW E 64 036124
finds an appropriate boundary reaction that ‘‘eliminate
zero eigenstates, as done by Eq.~6! for the GCP.

Before turning to the finite-size analysis of the calcula
gap, let us first present the phase diagram forn51 andn
52. Figure 1 shows these diagrams, obtained by the DM
method and standard finite-size scaling techniques. The
gion above the lines denotes the active state, where the
tem has a finite stationary density of particles, while bel
these lines, the stationary density is zero and the system
one of the absorbing states. We find~see below! that the
critical exponents are the same all along the critical line a
are those of the DP and PC universality class forn51 and
n52, respectively. We notice that the active region increa
from n51 to n52. The location of the critical lines agree
well with Monte Carlo simulations by Hinrichsen@8#.

It is worth while at this point to present in some mo
detail, the finite-size scaling analysis employed forn52, in
order to clarify the differences with the highern case. For
each choice of the rates (l,m) we can calculate the gapGL
of the matrixH for a system of lengthL. This gap equals the
lowest eigenvalue ofH8 defined in Eq.~7!. As a function of
L, GL has a different scaling behavior in the three regions
the phase diagram. In the active phase, the gap should
as GL;exp(2aL), since asymptotically inL, the absorbing
states are degenerate with a state having a finite densi
particles. At the critical line we haveGL;L2z, with z
5n i /n' the dynamical exponent. Forn52 the system is in
the PC universality class and the whole inactive phase
known to be algebraic: the gap decays asGL;L22. Notice
that the latter behavior is different in DP models where
gap is finite, i.e.,GL;G0.0, in the inactive phase.

The finite-size scaling behavior ofGL can best be moni-
tored by plotting the discrete logarithmic derivative of t

FIG. 1. Phase diagram of the generalized contact process
m15m25 . . . mn5m, as obtained by nonhermitian DMRG tech
niques, forn51 ~filled circles!, n52 ~empty squares!, and n53
~thick solid line!. Forn51 andn52, the region above the curves
the active phase, while the region below is inactive. In the limil
→`, the critical line forn52 approaches a finite value ofm, while
that forn51 diverges towardsm→0. In the other limitl→0, both
lines merge into a common special point~see Ref.@8#!. For n53,
the model is active in the whole parameter space except along
critical line 1/m50.
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gap: YL[ ln(GL11 /GL21)/ln@(L11)/(L21)#. In the active
phase, the scaling formGL;exp(2aL) implies YL;2aL
~with a a positive constant!, while YL;2z at the critical
line.

Figure 2 shows a plot ofYL for n52, l50.5 as a func-
tion of the parameterm for L55,7, . . . ,23~in the present
case, the calculation of the gap was extended up toL524).
In the right part of the figure, one distinguishes the scal
for the active phase, while in the left part~largem), one sees
that YL flattens out and approaches the value of22, as ex-
pected for the algebraic inactive phase of PC models.
maxima ofYL , marked with a filled circle in Fig. 2, identify
the boundary between the active and inactive phase and
be used as critical point estimates. From anL→` extrapo-
lation we findmc50.69(1) for our choice ofl50.5, which
determines pointB of the critical line in Fig. 1. In the inset o
Fig. 2 we plot zL52maxm YL(m,l50.5), as a function of
1/L. ExtrapolatingzL in the limit L→` we find zL→1.747,
in accurate agreement with the corresponding expon
known for the PC classz5n i /n'51.74(1) @16#.

In this way, the DMRG enables us to determine the cr
cal region and the exponentz. As we will show in the fol-
lowing subsection, using different boundary conditions
can also find estimates for other exponents. In Table I,
show our estimates of the critical exponentsz andb/n' , in
the pointsA andB of Fig. 1. We recover the exponents of D
and PC as expected forn51 andn52, respectively, indicat-
ing that the DMRG is performing well.

or

he

FIG. 2. Plot ofYL for the GCP withn52 as function ofm and
for l50.5. Inset: plot ofzL as a function of the inverse system
length 1/L. The horizontal lines indicate the values two and t
known value of the exponentz for the PC universality class (z
51.74).

TABLE I. Estimates for the critical exponentsz5n i /n' and
b/n' calculated forn51 and 2 absorbing states. We recall that f
DP z51.5806,b/n'50.25 and for PCz51.75, b/n'50.50.

n l mc z5n i /n' b/n'

1 0.5 0.20~1! 1.575~5! 0.255~5!

2 0.5 0.69~1! 1.747~5! 0.49~1!
4-3
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B. The casenÄ3

Since the results of the DMRG are consistent with
Monte Carlo results forn51 andn52, we can confidently
use it to study also the casen53. Again we start by an
analysis of the gap: in Fig. 3 we plot the quantityYL along
the linel5m for L57,9, . . .,19. As forn52, we find clear
evidence of an active phase for smallm whereYL;2aL.
However, when we want to determine the critical point
localizing the maxima, we find that upon increasingL, the
maxima shift towards larger values ofm. In the limit L→`,
we findmmax→`, indicating that the system is always activ
and that the critical point is shifted to 1/m50. This numeri-
cal evidence, together with the arguments presented in
next section, lead us to expect that the model is critical o
if 1/m50, as indicated in Fig. 1. The estimate of the exp
nent z at l5m→` yields z52.00(3). In the next section,
we will give an analytical treatment of the case 1/m50 con-
firming this value ofz.

To get access to more critical exponents, we introd
different boundary conditions. We replace Eq.~6! with

0k→A with ratep8 ; k, ~8!

through which particles are continuously injected at
boundary sites. Now the statesuck

0& are no longer absorbing
configurations, and the spectrum of the Hamiltonian is n
degenerate. There is a unique right eigenvectoruf0&, which
for finite system lengths always has a finite density of p
ticles. In the active phase, the gapGL8 is no longer asymp-
totically degenerate, as in the previous case, but it rem
finite, indicating that the system relaxes exponentially f
towards uf0&. Summarizing, if we consider the model d
fined by the reactions~1!–~4! and the boundary term~8! we
have a gap behaving as lim

L→`
GL85G0.0 in the active

phase, while as beforeGL8;L2z at the critical point. This
means we can useGL8 itself to discriminate between the ac
tive and critical domains.

Figure 4 shows a plot of the gapGL8 along the linel
5m. When we extrapolateL→`, the gap remains finite fo
every value ofm, i.e., we find again that the system is acti
throughout the whole parameter space.

FIG. 3. Plot ofYL for the GCP withn53 along the linel5m.
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These data also give the possibility to estimate the co
lation length exponent along the time direction:n i . Finite-
size scaling around the critical point 1/m50 gives us the
following scaling relation:

GL8~l5m!5m2n i f ~mL2z/n i!. ~9!

For m fixed andL→`, GL8 remains finite, so the scaling
function should behave like lim

x→01 f (x)5 f 0. As a conse-
quence in the thermodynamic limitL→`, the gap should
vanish at the critical point asGL8;m2n i. The linear behavior
of the gap in Fig. 4, when plotted as a function ofm22,
already indicates thatn i52 and this results is also consiste
with the scaling collapse reported in the inset, where we to
n i52 andz52.

Finally, using the same boundary term~8! it is also pos-
sible to compute the critical exponentb that describes the
behavior of the particle density near the critical point. W
the boundary condition~8!, the stationary state of any finit
system has a nonzero density of particles. We calculated
particular, the average density of particles in the central
of the chain that we will denote asrL(l,m). This quantity,
calculated along the linel5m, is shown in Fig. 5 for chains
of various lengths~up to L524) and plotted as function o
1/m. For largem andl (m>2), the DMRG does not perform
so well and we had to restrict the calculation toL514.

As seen in the figure in the limitL→`, the stationary
particle density vanishes only form→`, again indicating
that the system is always active for any finitem. For largem,
the order parameter is expected to decay asr;m2b, there-
fore the quantity

beff~m,L !52
d ln rL~l5m!

d ln m
~10!

converges tob for L→` and m→`. The inset of Fig. 5
shows a plot ofbeff as a function of 1/m for chains of various

FIG. 4. Plot of the gapGL8(m), calculated along the linel5m
@with p85m in reaction ~8!# as function ofm22 for systems of
lengthsL56,8, . . . ,18.Inset: scaling collapse ofmn iGL8(m), plotted
as function ofmL21/n' for L510, 12, 14, 16, and 18 and where w
usedn i52 andn'51.
4-4
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system lengths. The extrapolated result forL512 and L
514 is b51.00(1). ~See Fig 5.!

In summary, we found that forn53, the system is always
active, except for 1/m50 where it is critical and we have
exponents consistent withz52, n i52, b51.

C. The casenÄ4

To conclude our numerical calculations for the case
symmetrical ground states, we studied the system with f
inactive states per site. Here, we restricted ourselves
calculation of the densityrL(l,m) with boundary condition
~8!. Our results are shown in Fig. 6.

From these data we find, as was the case forn53, that the
system is active for any finite value ofm, and that the critical
exponentb50.98(4).

FIG. 5. Plot of the stationary particle densityr for the model
with n53 absorbing states along the linem5l for various system
sizes (L54,6, . . . ,24). For largem, the calculation has been lim
ited toL514. Inset: plot of the effective exponentb as function of
1/m for L56 ~lower curve! up to L514 ~upper curve!.

FIG. 6. Plot of the stationary particle densityr for the model
with n54 absorbing states along the linem5l for various system
sizes (L54,6, . . . ,14). For largem, the calculation has been ex
tended up toL510. Inset: plot of the effective exponentb as func-
tion of 1/m for L56 ~lower curve! up to L510 ~upper curve!.
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III. FAST RATE EXPANSION FOR µ OR l\`

In this section, we show how the dynamics of the mod
can be simplified in the limit where one of the rates of t
decay processes~1! or ~2! goes to infinity. Form→`, the
resulting effective dynamics coincides with that of a ze
temperaturen-state Potts model. This leads to a determin
tion of the exponentz.

Intuitively, the argument goes as follows. Form→`, all
particles in the system will disappear very quickly, and
any finite system one will soon be in a configuration conta
ing only then empty sites 01 , 02, and 0n . Particles will then
be created at the boundaries separating inactive domain
Eq. ~4!, but again they will disappear immediately by rea
tion ~2!. Hence, when looked at the time scale of the sl
processes~3! and ~4! the dynamics can be limited to the s
of configurations that contain only empty sites.@In this limit,
the creation of two particles on nearest-neighbor sites oc
with even smaller probability and the effect of Eq.~1! can
therefore be neglected#. As an example consider:

¯0k0k0k0l0l¯→
~4!

¯0k0kA0l0l¯→
~2!

¯0k0k0l0l0l¯ .
~11!

The whole process consists of moving the domain wall o
unit to the left with rate~on the time scale of the slow pro
cess! equal to 1/2. Going in this way through all possibilitie
one can derive an effective dynamics on the slow time sc
which turns out to involve diffusion, annihilation and coag
lation of domain walls.

The above heuristic reasoning can be made mathem
cally rigorous using a fast rate expansion introduced in@14#.
We therefore writeH as

H5H01mH1 , ~12!

whereH0 contains the reactions~1!, ~3!, and ~4! while H1
contains only the reactions~2!. In the limit m→`, it is ap-
propriate to apply the Schwinger-Dyson formula to the o
eratore2Ht that appears in the formal solution of the mas
equation~5!. One has

e2(H01mH1)t5e2mH1tF12E
0

t

dt1H0~t1!

1E
0

t

dt1E
0

t1
dt2H0~t1!H0~t2!1 . . . G ,

~13!

where

H0~t!5emH1tH0e2mH1t. ~14!

Using this expansion it can be shown@14# that form→` the
time evolution operatore2Ht becomes

lim
m→`

e2(H01mH1)t5e2H̃0tT!, ~15!

where
4-5
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JEF HOOYBERGHS, ENRICO CARLON, AND CARLO VANDERZANDE PHYSICAL REVIEW E64 036124
H̃05T!H0T! ~16!

andT! is the projector on the ground states ofH1, i.e.,

T!5 lim
t→`

e2H1t. ~17!

Equation ~15! shows that form→`, the generator of the
effective dynamics isH̃0 that is nothing butH0 projected
onto the ground states ofH1. In the GCP, the ground states
H1 for a chain of lengthL are thenL configurations without
particles andH̃0 is then the effective Hamiltonian of the slo
processes projected in this reduced space. This is the m
ematical description of the physical arguments given in
beginning of this section. If one works out the matrix e
ments ofH̃0 ~see the Appendix! one obtains that the follow
ing processes can occur with the indicated rates:

0k0l0k→0k0k0k rate 2, ~18!

0k0l0l→0k0k0l rate 1/2,

→0k0l0l rate 1/2, ~19!

0k0l0m→0k0k0m rate 1,

→0k0m0m rate 1. ~20!

It is now useful to interpret then empty states as th
possible spin values of ann-state Potts model. In this lan
guage, the processes~18–20! can be summarized as follows
the central spin assumes the value of one of its neigh
spins with equal probability. The dynamics of our model
the limit m→` is therefore consistent with the requiremen
of detailed balance for ann-state Potts model at zero tem
perature. It is generally expected that if such a dynam
includes a domain-wall diffusion, that then it is critical wit
a dynamic exponentz52 @17#, independently ofn. In fact,
the exponentz52 can be derived exactly for the case th
the rate of the process~18! equals one, and those of th
processes in Eq.~20! equal 1/2@18#. Hence, it is quite pos-
sible that also for our model,z52 exactly. Forn52, we thus
recover the known dynamical exponentz52 in the inactive
phase of a model with a PC transition. Forn>3 our numeri-
cal data strongly suggest that form→`, the GCP is critical,
and hence, the exponentz52 must correspond to the dy
namical exponent at criticality for these models. This e
mate is indeed consistent with the value that was determ
numerically forn53 in the previous section.

The result that numerically the exponentb is the same for
n53 andn54, combined with the fact thatz52 if n>3
leads us to conjecture that for alln>3, the critical exponents
are the same, i.e.,b51, z52, andn i52. In the next section
we will give further arguments that support this conjectur

It is also possible to study the effective dynamics of t
GCP for l→`. In this limit, the dynamics of the mode
when considered on the time scale of the slow proces
~2!–~4!, will be restricted to the space of configurations wit
out particle pairs. Each particle present in the system t
separates two domains of empty sites. Therefore, parti
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can be labeled by two indices and in this way they can
divided into classes. We will denote byAi j a particleA that
separates an 0i domain on its left side from an 0j domain on
its right side. In the limitl→`, it is useful to look at the
dynamics of these particles. Whenn51, there is only one
type of particle, and from a determination of the effecti
HamiltonianH̃0 ~see the Appendix! we find that this particle
can diffuse, and undergo the reactions 2A→A and A→0.
Since there are no processes that create particles, we arr
the conclusion that independently ofm, the GCP withn51
must always be in the inactive state whenl→`. This is in
agreement with our numerical results~see Fig. 1!.

For n.1, the situation is less clear. Now there are p
cesses that both destroy and create particles present in
effective dynamics~see the Appendix!. It is therefore, in
principle, possible to have both an active and an inact
phase, depending on the value ofm. At this moment, we can
draw no firm conclusions for the form of the phase diagr
whenl→`. On the basis of our numerical work and on th
basis of our results form→`, we believe that the model is
probably always active along that line, at least whenn.2.

IV. RELATION WITH BRANCHING AND ANNIHILATING
WALKS

In his paper, Hinrichsen@8# gave an heuristic argumen
that relates the GCP forn52 to the BARW with two off-
springs, thus explaining the PC universality found nume
cally. This argument works as follows: indicating withXi j
the domain wall between two configurations 0i and 0j he
considered an effective dynamics for the variablesXi j . As
seen in the previous section such representation of the o
nal model becomes exact either in the limitl→` and then
Xi j coincides with the particleAi j , or in the limit m→`
whereXi j coincides with the bond variable 0i0 j . For finite
values of these parameters one can still apply this reaso
at a coarse-grained level. In this case,Xi j is not a sharp
domain wall, but an object with a fluctuating thickness. H
richsen argued that in this coarse-grained representation
most likely reactions forn52 are

Xi j →
~a!

Xi j Xji Xi j Xi j Xji →
~b!

0, ~21!

~for n52, one has obviouslyi 51, j 52 or viceversa!. An
example of such reactions is shown in Figs. 7~a! and ~b!.
Notice that the reactions~a! and ~b! given in Eq. ~21! are
those for a branching-annihilating random walk~BARW!
with two offsprings, which suggests indeed, as found n
merically that the universality class is PC.

These arguments can be extended to the casen.2, where
there is still the possibility of having reactions of type~a! and
~b!, but also reactions involving three different domai
( iÞ j , iÞk, and j Þk):

Xi j →
~c!

XikXk j XikXk j→
~d!

Xi j . ~22!

Whenn.2 there are actuallyn(n21)/2 domain walls, and
the model described by reactions~21! and ~22! is now a
4-6
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BARW with more than one type of particles. To our know
edge, this type of model has not been studied yet, but
expect it to be in the same universality class as the GCP
n.2, i.e., always in an active state except when the rates
the processes~a! and ~c! are zero, and with exponentsz
52, b51 andn i52.

There is a BARW with more than one type of particl
that has attracted some attention recently. The model
introduced by Cardy and Ta¨uber@10#, who considered a sys
tem with N different particlesAa, where a51,2, . . . ,N,
which diffuse and undergo the reactions:

2Aa→0 with rate 1, ~23!

Aa→AaAaAa with rate s, ~24!

Aa→AaAbAb with rate s8/~N21!, ~25!

where, in the last reaction, it is understood thataÞb. The
bosonicversion of this model has precisely the same ex
nents we determined for the GCP withn.2 @10#. Notice that
the coarse-grained representation of the GCP as define
the reactions in Fig. 7 and the model defined by the react
~23!, ~24!, ~25! do not actually coincide. While there is a
obvious correspondence between~23!, ~24!, with ~b!, ~a! of
Fig. 7, the reaction~25! does not have any obvious counte
part. It is nota priori clear, therefore, that the two models a
in the same universality class. The coincidence of the crit
exponents therefore suggests that one could replace Eq.~25!
with other reactions, as for instanceAa→AgAd, without
changing the universality class. To our knowlegde, BAR
models with this kind of reactions have not been studied
They form an interesting subject for further investigation.

The model of Cardy and Ta¨uber has raised some intere
recently since it has been found that fermionic and boso
versions of the model are in different universality class
@19#. In the fermionic version only one particle per lattic
site is allowed, which implies that particles of different sp
cies block each other. In the fermionic version of the mod
it makes for instance a difference wether the two offsprin
produced by the reaction~25! are placed to the same side
at opposite sides of the parent particle@19,20#. If, for in-

FIG. 7. Possible reactions in the coarse-grained represent
of the GCP forn52 ~a!–~b! andn.2 ~a!–~d!.
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stance, they are placed at opposite sides the offsprings ca
annihilate through the reaction~23! because of the presenc
of the parent particle that blocks them. In the bosonic mod
the two offspring can instead always recombine.

It is important to stress here that in the multispec
BARW model we constructed@Eqs. ~21!–~22!# from a
coarse-grained representation of the GCP there are no bl
ing effects. By the very construction of the model two d
main walls approaching each other can always annihil
Therefore, even if the model is clearly of fermionic nature
universality class, as found numerically, is that of t
bosonic multispecies BARW.

V. THE EFFECT OF BREAKING THE SYMMETRY

As a final point we consider the effect of breaking t
permutation symmetry of the inactive states of the mod
For n52 Hinrichsen@8# explicitely broke theZ2 symmetry
by choosingm1Þm2 in the reaction~2!. As a result, he found
the system to switch from PC to DP behavior, which w
understood as PC being related to the presence of an e
Z2 symmetry.

For n53, we now perform a similar symmetry breakin
by considering the following two cases:~a! m1/25m25m3
and ~b! 2m15m25m3. In both cases, the system has aZ2
symmetry due to the equivalence of the states 02 and 03. The
difference is that starting from a random configuration in t
second case the system is more likely to reach the absor
states (02 ,02 ,02 , . . . ,) and (03 ,03 ,03 , . . . ,) compared
with (01 ,01 ,01 , . . . ,), while in the first case the reverse
true. We calculated the particle densityrL(l,m1 ,m2 ,m3) as
before, using the boundary term~8!. Depending on the phas
in which the model is, the density will behave asrL5r0
1Ce2aL ~in the active region!, rL;L2b/n' ~at criticality!,
or rL;e2aL ~in the inactive phase!. If we define d(L)5
2 ln@rL11 /rL#/ln@(L11)/ln(L21)#, we expect lim

L→`
d(L) to

be zero in the active phase, to beb/n' at critical points, and
1` in the inactive phase. In Fig. 8 we plottedd(L) as a
function of 1/L for cases~a! and ~b! with the choicel
50.5 and injection ratep851.5. In both cases, for smallm
one finds the typical scaling behavior of the active pha
with d(L)→0 just as for the casem15m25m3. For large
mk , however, the situation differs from the symmetr
model. For~a!, we findd(L)→1` for largem, i.e., one has
a standard inactive phase with a particle density expon
tially small in L. In case~b!, d(L) becomes equal to one
implying that the inactive phase is itself critical withb/n'

51. In between the active and the inactive phase we ha
critical point whered(L) is going to a distinct finite value
The critical point estimates ofd(L) are marked by filled
circles in Fig. 8. For case~a! the critical point is atm1
'0.64, while for ~b! it is at m1'0.42. The value ofb/n'

agrees with that of DP and PC, respectively, as can be see
Fig. 8 where the critical values of these universality clas
are indicated with a dotted line.

This indicates that on breaking the symmetry of the in
tive states, the remaining symmetry of thedominantratesm i
determines the critical behavior. In case~b!, m1,m25m3 the

on
4-7
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dominant rates still have aZ2 symmetry leading to the PC
universality class, while in case~a! m1.m25m3, DP critical
behavior is recovered.

VI. CONCLUSIONS

In this paper, we studied a generalized contact proc
first introduced by Hinrichsen. The major part of our resu
were obtained by applying the DMRG to the model. W
this technique we verified that forn52, the critical line of
the model is in the PC universality class, consistent w
earlier results coming from simulations.

A first set of results was obtained for the casen53, for
which we found that the model is always active, except wh
m→`, which corresponds to the critical line of the mod
From our numerical work, we determined the critical exp
nents to be equal toz52,n i52 and b51. Using well-
established scaling laws@21#, other exponents can be dete
mined from these three. Forn54, we found evidence tha
the phase diagram is the same, and that the critical expo
b also equals one. Secondly, using a fast-rate expansion
becomes exact form→`, we were able to argue that in tha
limit z52. It can be hoped that by examining the model
m21 small using perturbation techniques, it may be poss
to determine also the exponentsb and n i exactly. On the
basis of these numerical and exact results, we conject
that the universality class of the model is the same for
n>3.

The exponent values that we found forn>3 coincide
with those of the BARW model with more than one type
particles introduced by Cardy and Ta¨uber@10#. We were able
to give an heuristic argument that explains why the two m
els could be in the same universality class. It is interesting
remark that despite many attempts the number of univer
ity classes found for phase transitions out of an adsorb

FIG. 8. Plot of d for the GCP withn53 and ~a! m1/25m2

5m3, ~b! 2m15m25m3. Both cases were calculated withl50.5
and p851.5. Symbols refer to curves calculated in the inact
phase~stars!, at the critical point~filled circles! and in the active
phase~empty squares!. At criticality d(L) converges towards the
values ofb/n' expected for DP~a! and PC~b!, and indicated by
horizontal dashed lines in the figure. Notice the two distinct beh
iors of d in the inactive phase.
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phase, remains very limited. It could have been hopea
priori that for the generalized GCP studied here, new univ
sality classes could appear forn.2. In a sense our result
show that this is true, but only in the least exciting w
possible: the universality class does not depend onn, and
moreover, the exponents take on rather trivial values. O
could hope that by lowering the permutation symmetry to
Zn symmetry, other universality classes could appear fon
>4. This could be done, e.g., by having the rates of
process~4! depend onuk2 l u mod(n). But since this would
only make a difference forn>4, it will probably be difficult
to investigate such a model with the numerical techniq
currently available.

We also verified that if one breaks the permutation sy
metry of the model withn53, one recovers a DP or PC
universality, suggesting that it is the symmetry of the larg
rates that determines the universality class.

Finally, we remark that the consistency of the DMR
results with those coming from simulation forn52, or with
the exactly determined value ofz for n>3, shows convinc-
ingly that the DMRG can be trusted as a powerful method
the study of~criticality in! non equilibrium systems.
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APPENDIX

In this appendix, we will calculate explicitly
lim

r→`
e2(H01rH 1)t, wherer is one of the rates of the GCP

In Sec. III, it was shown that this reduces to the calculat
of H̃05T* H0T* , the Hamiltion that describes the effectiv
dynamics. SinceT* 5 lim

t→`
e2H1t, this is a projection of

H0 on the ground states ofH1.
Let us denote the right ground states ofH1 asuc i& and the

left ones aŝ pi u.

H1uc i&50, ~A1!

^pi uH150. ~A2!

The physical meaning ofuc i& is evident: they are the station
ary states ofH1, any stateuc& will under the dynamics ofH1
relax into one of theseuc i&. The left ground stateŝpi u can
be interpreted as linear functionals giving the correspond
probabilities: any stateuc& will under the dynamics ofH1
relax into the ground stateuc i& with probability ^pi uc&
~where we assumed that^pi u are normalized:̂ pi uc j&5d i j ).
Using this notation, we can write the projection operatorT*
as

T* 5(
i

uc i&^pi u. ~A3!

Since, clearly,@( i^pi u#uc&51 for any ~normalized! state
uc&, this projection conserves probability, meaning that wh

-

4-8
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H0 is a stochastic operator, so isH̃0. Furthermore, we can
write the transition rates of the effective dynamics betwe
stateuc i& and uc j& as

rate~ uc i&→uc j&)5^pj u~2H0!uc i&. ~A4!

These matrix elements determine the effective dynamics,
we will now calculate them explicitly.

We first study the limit where the ratem of the processes
A0k ,0kA→0k0k goes to infinity. The Hamiltonian is of the
form

H5H01mH1 , ~A5!

whereH0 is the generator of the processes~1!, ~3!, ~4!, and
H1 is the generator of process~2! with the factorm brought
out. In this case the ground statesuc i& of H1 are all configu-
rations containing no particlesA. First, we note that the pro
cesses~1! and ~3! can only act on configurations containin
particles, so they cannot contribute to the rates~A4! of the
effective dynamics, and we redefineH0 without them.

When we now projectH0, which contains only two-site
interactions, onto theuc i&, the resulting operator will contain
three-site interactions. It is therefore convenient to first
write H0 as a three-site operator. Since we only have reac
~4! left in H0, this becomes (kÞ lÞm)

0k0l0k→0kA0k , rate 2

0k0l0m→0kA0m rate 2 ~A6!

0k0l0l→0kA0l rate 1

0k0lA→0kAA rate 1

~together with some reactions that are obtained by refl
tion!. We finally notice that the last process of Eq.~A6! is
again not relevant for the projection onuc i&, and determine
the effective dynamics in the following diagram:

Reaction Projection
with rate with probability Net rate

0k0l0k →
rate 2

0kA0k →
1

0k0k0k rate 2•152

0k0l0m →
rate 2

0kA0m →
1/2

0k0k0m rate 2•
1

2
51

→
1/2

0k0m0m rate 2•
1

2
51

0k0l0l →
rate 1

0kA0l →
1/2

0k0k0l rate 1•
1

2
5

1

2

→
1/2

0k0l0l rate 1•
1

2
5

1

2
~A7!
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which are the processes and their corresponding rates alr
given in Eqs.~18!–~20!. Note that this calculation is exactl
the same form5l→`.

Next, we consider the limitl→`. In this case, we have

H5H01lH1 , ~A8!

whereH0 is the generator of the processes~2–4!, andH1 is
the generator of process~1! with the factorl brought out.
The ground states ofH1 are now all configurations contain
ing no particle pairs. In contrast with the previous case,
processes ofH0 are now relevant for the projection on th
ground states ofH1.

We will start with the casen51, where there is only one
inactive state 0, and process~4! cana priori not take place.
For process~3! we again use the three-site representati
while process~2! is so simple that we keep the two-site re
resentation. We then get the following effective dynamics

Reaction Projection
with rate . . . withprobability . . . Netrate

A0 →
ratem

00 →
1

00 rate m•15m

A00 →
rate 1

AA0 →
1/2

A00 rate 1•
1

2
5

1

2

→
1/2

0A0 rate 1•
1

2
5

1

2

A0A →
rate 2

AAA →
1/2

A0A rate 2•
1

2
51

→
1/4

0A0 rate 2•
1

4
5

1

2

→
1/8

A00 rate 2•
1

8
5

1

4

→
1/8

00A rate 2•
1

8
5

1

4
~A9!

For l→` andn51 we find the effective dynamics to con
tain only diffusion and destruction of particles. Because
the first reaction appearing in Eq.~A9!, the decay of particles
is exponentially fast, meaning that for any finite value ofm
this system is noncritical.

For the casen.1 also process~4! has to be taken into
account. As a consequence, two different neighboring in
tive domains remain active. For example,

0k0l0l→0kA0l ~A10!

remains a process of the effective dynamics. One can ea
construct the complete effective dynamics, but this does
lead to much further insight in the phase diagram. One
only conclude that because of the presence of the pro
~A10!, it is in principle possible that both active and inactiv
phases are present.
4-9
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